Complete JEE Main Physics Syllabus 2019

Published on : 25th August 2018
IIT JEE Main Exam

With less than 10 days to go for the JEE Main (I) 2019 registration (1st September 2018), candidates should get hold of the complete JEE Main 2019 syllabus, which would ultimately help them prepare for the April session exam. Conducted by NTA (National Testing Agency), the Joint Entrance Examination Main has been scheduled to be conducted on 6th January 2019 in 8 different sittings. Candidates can book their slots as per their choice and convenience.

The JEE Main 2019 Physics syllabus has two sections - Section A and Section B. Section A has the theory part with 80% weightage of marks, and Section B has the Practical Component (Experimental Skills) with 20% weightage.

SECTION – A

UNIT 1: PHYSICS AND MEASUREMENT

Physics, S I units, technology and society, Fundamental and derived units, accuracy and precision of measuring instruments, Least count, Dimensions of Physical quantities, Errors in measurement, Dimensions of Physical quantities, dimensional analysis and its applications.

UNIT 2: KINEMATICS

Frame of reference, speed and velocity, Motion in a straight line: Position-time graph, average speed and instantaneous velocity, Uniform and non-uniform motion, velocity-time, uniformly accelerated motion, position-time graphs, Scalars and Vectors, relations for uniformly accelerated motion, Scalar and Vector products, Vector Addition and Subtraction, Unit Vector, Zero Vector, Resolution of a Vector, Projectile Motion, Relative Velocity, Motion in a plane, Uniform Circular Motion.

UNIT 3: LAWS OF MOTION

  • Force and Inertia, Newton’s First Law of motion: Momentum, Newton’s Second Law of motion: Impulse; Newton’s Third Law of motion: Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces.
  • Static and Kinetic friction, laws of friction, rolling friction
  • Dynamics of uniform circular motion: Centripetal force and its applications.

UNIT 4: WORK, ENERGY AND POWER

  • Work done by a constant force and a variable force; kinetic and potential energies, work-energy theorem, power
  • The potential energy of a spring, conservation of mechanical energy, conservative and non-conservative forces; Elastic and inelastic collisions in one and two dimensions

UNIT 5: ROTATIONAL MOTION

  • Centre of the mass of a two-particle system, Centre of the mass of a rigid body; Basic concepts of rotational motion; a moment of a force, torque, angular momentum, conservation of angular momentum and its applications; a moment of inertia, the radius of gyration
  • Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications.
  • Rigid body rotation, equations of rotational motion

UNIT 6: GRAVITATION

  • The universal law of gravitation Acceleration due to gravity and its variation with altitude and depth. Kepler’s laws of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geostationary satellites

UNIT 7: PROPERTIES OF SOLIDS AND LIQUIDS

  • Elastic behaviour, Stress-strain relationship, Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity
  • Pressure due to a fluid column; Pascal’s law and its applications
  • Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, Reynolds number
  • Bernoulli’s principle and its applications
  • Surface energy and surface tension, the angle of contact, application of surface tension – drops, bubbles and capillary rise
  • Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat
  • Heat transfer-conduction, convection and radiation, Newton’s law of cooling

UNIT 8: THERMODYNAMICS

  • Thermal equilibrium, zeroth law of thermodynamics, the concept of temperature
  • Heat, work and internal energy
  • First law of thermodynamics
  • The second law of thermodynamics: reversible and irreversible processes
  • Carnot engine and its efficiency

UNIT 9: KINETIC THEORY OF GASES

  • The equation of state of a perfect gas, work done on compressing a gas
  • Kinetic theory of gases – assumptions, the concept of pressure
  • Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro’s number.

UNIT 10: OSCILLATIONS AND WAVES

  • Periodic motion – period, frequency, displacement as a function of time
  • Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring -restoring force and force constant; energy in S.H.M
  • kinetic and potential energies; Simple pendulum – derivation of expression for its time period; Free, forced and damped oscillations, resonance
  • Wave motion
  • Longitudinal and transverse waves, the speed of a wave
  • Displacement relation for a progressive wave
  • The principle of superposition of waves, a reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound

UNIT 11: ELECTROSTATICS

  • Electric charges: Conservation of charge, Coulomb’s law-forces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution
  • Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field
  • Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell, Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field
  • Conductors and insulators, Dielectrics and electric polarisation, capacitor, a combination of capacitors in series and parallel, the capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor

UNIT 12: ELECTRICITY CURRENT

  • Electric current, Drift velocity, Ohm’s law, Resistances of different materials, Electrical resistance, V-I characteristics of Ohmic and nonohmic conductors, Electrical resistivity,  Electrical energy and power, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance
  • Electric Cell and its Internal resistance, potential difference and emf of a cell, a combination of cells in series and parallel
  • Kirchhoff’s laws and their applications
  • Wheatstone bridge, Metre bridge. Potentiometer – principle and its applications.

UNIT 13: MAGNETIC EFFECTS OF CURRENT AND MAGNETISM

  • Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.
  • Force on a current-carrying conductor in a uniform magnetic field. The force between two parallel current-carrying conductors-definition of an ampere. Torque experienced by a current loop in the uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter.
  • Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferromagnetic substances. Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.

UNIT 14: ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS

  • Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents
  • Self and mutual inductance
  • Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current
  • AC generator and transformer

UNIT 15: ELECTROMAGNETIC WAVES

  • Electromagnetic waves and their characteristics
  • Transverse nature of electromagnetic waves
  • Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, Xrays, gamma rays)
  • Applications of e.m. waves

UNIT 16: OPTICS

  • Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.
  • Wave optics: wavefront and Huygens’ Principle, Laws of reflection and refraction using Huygen’s principle. Interference, Young’s double slit experiment and expression for fringe width with coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarised light; Brewster’s law, uses of plane polarised light and Polaroids.

UNIT 17: DUAL NATURE OF MATTER AND RADIATION

  • Dual nature of radiation.
  • Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light.
  • Matter waves-wave nature of the particle, de Broglie relation.
  • Davisson-Germer experiment.

UNIT 18: ATOMS AND NUCLEI

  • Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum.
  • Composition and size of the nucleus, atomic masses, isotopes, isobars; isotones.
  • Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.

UNIT 19: ELECTRONIC DEVICES

  • Semiconductors; semiconductor diode: I-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator.
  • Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator.
  • Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.

UNIT 20: COMMUNICATION SYSTEMS

Propagation of electromagnetic waves in the atmosphere; Sky and space wave propagation, Need for modulation, Amplitude and Frequency Modulation, Bandwidth of signals, Bandwidth of Transmission medium, Basic Elements of a Communication System (Block Diagram only).

SECTION –B

UNIT 21: EXPERIMENTAL SKILLS

Familiarity with the basic approach and observations of the experiments and activities:

  1. Vernier calipers – its use to measure the internal and external diameter and depth of a vessel.
  2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire.
  3. Simple Pendulum-dissipation of energy by plotting a graph between square of amplitude and time.
  4. Metre Scale – mass of a given object by the principle of moments.
  5. Young’s modulus of elasticity of the material of a metallic wire.
  6. The surface tension of water by capillary rise and effect of detergents.
  7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.
  8. Plotting a cooling curve for the relationship between the temperature of a hot body and time.
  9. The speed of sound in air at room temperature using a resonance tube.
  10. Specific heat capacity of a given (i) solid and (ii) liquid by the method of mixtures.
  11. The resistivity of the material of a given wire using metre bridge.
  12. The resistance of a given wire using Ohm’s law.
  13. Potentiometer –
    • Comparison of emf of two primary cells.
    • Determination of internal resistance of a cell.
  14. Resistance and figure of merit of a galvanometer by half deflection method.
  15. The focal length of:
    • Convex mirror
    • A concave mirror, and
    • Convex lens
  16. using the parallax method.
  17. The plot of angle of deviation vs angle of incidence for a triangular prism.
  18. Refractive index of a glass slab using a travelling microscope.
  19. Characteristic curves of a p-n junction diode in forward and reverse bias.
  20. Characteristic curves of a Zener diode and finding reverse break down voltage.
  21. Characteristic curves of a transistor and finding current gain and voltage gain.
  22. Identification of Diode, LED, Transistor, IC, Resistor, Capacitor from a mixed collection of such items.
  23. Using a multimeter to:
    • Identify base of a transistor
    • Distinguish between npn and pnp type transistor
    • See the unidirectional flow of current in case of a diode and an LED.
    • Check the correctness or otherwise of a given electronic component (diode, transistor or IC).

JEE Main Exam Structure 2019:

Being one of the high-profile entrance examinations in the country, JEE Main forces students to prepare the best possible way they can. The preparation can go smoothly when they are aware of the JEE Main exam pattern. There are two papers in the 2019 exam. Paper I is conducted for B.Tech/B.E. Admission and Paper II is held for B.Arch/B.Planning course. The duration of both the exams is 3 hours. There is negative marking scheme as well. The Physic subject would get 30 questions carrying 120 marks. Take a look at the detailed exam structure of the Joint Entrance Examination.

Particulars

Paper I

Mode of Exam

Computer-Based Test (CBT)

Subjects

Physics, Mathematics and Chemistry

Number of Questions

90 Questions

(Physics – 30 Questions, Chemistry – 30 Questions and Mathematics – 30 Questions)

Maximum Marks

360 marks

Duration of Exam

180 minutes

Nature of Questions

MCQs

Marking Scheme

4 marks for every correct answer

1 mark will be deducted for every incorrect answer

Visit the link for more information about the Joint Entrance Examination (I & II) 2019. (https://www.examsplanner.in/iit-jee-main-exam/#Syllabus)

Recommended Books for JEE Main 2019:

Some of the recommended books for Physics preparation are NCERT books (for objective type questions), Concepts of Physics Vol I and II by H.C. Verma; Problems in General Physics by I.E Irodov, Fundamentals of Physics by Halliday, Resnick and Walker.

In Paper 1 of JEE Main, there are two other subjects; Mathematics and Chemistry and in Paper 2, there is an Aptitude Test.

JEE Main Toppers Recommended Books - click here

Check this link out for the complete step-by-step JEE Main 2019 application process https://www.examsplanner.in/articles/jee-main-application-process/.


Available Application Forms

IIT JEE Main Exam Previous Years Solved Papers


Recommended Books for IIT JEE Main Exam



Comments